Abstract

BackgroundThis study investigates the implementation of a new intensity modulated arc therapy (IMAT) class solution in comparison to a 6-static beam step-and-shoot intensity modulated radiotherapy (s-IMRT) for three-phase adaptive 18F-FDG-PET-voxel-based dose-painting-by-numbers (DPBN) for head-and-neck cancer.MethodsWe developed 18F-FDG-PET-voxel intensity-based IMAT employing multiple arcs and compared it to clinically used s-IMRT DPBN. Three IMAT plans using 18F-FDG-PET/CT acquired before treatment (phase I), after 8 fractions (phase II) and CT acquired after 18 fractions (phase III) were generated for each of 10 patients treated with 3 s-IMRT plans based on the same image sets. Based on deformable image registration (ABAS, version 0.41, Elekta CMS Software, Maryland Heights, MO), doses of the 3 plans were summed on the pretreatment CT using validated in-house developed software. Dosimetric indices in targets and organs-at-risk (OARs), biologic conformity of treatment plans set at ≤5 %, treatment quality and efficiency were compared between IMAT and s-IMRT for the whole group and for individual patients.ResultsDoses to most organs-at-risk (OARs) were significantly better in IMAT plans, while target levels were similar for both types of plans. On average, IMAT ipsilateral and contralateral parotid mean doses were 14.0 % (p = 0.001) and 12.7 % (p < 0.001) lower, respectively. Pharyngeal constrictors D50% levels were similar or reduced with up to 54.9 % for IMAT compared to s-IMRT for individual patient cases. IMAT significantly improved biologic conformity by 2.1 % for treatment phases I and II. 3D phantom measurements reported an agreement of ≥95 % for 3 % and 3 mm criteria for both treatment modalities. IMAT delivery time was significantly shortened on average by 41.1 %.ConclusionsIMAT implementation significantly improved the biologic conformity as compared to s-IMRT in adaptive dose-escalated DPBN treatments. The better OAR sparing and faster delivery highly improved the treatment efficiency.Electronic supplementary materialThe online version of this article (doi:10.1186/s13014-016-0629-3) contains supplementary material, which is available to authorized users.

Highlights

  • This study investigates the implementation of a new intensity modulated arc therapy (IMAT) class solution in comparison to a 6-static beam step-and-shoot intensity modulated radiotherapy (s-Intensity-modulated radiation therapy (IMRT)) for three-phase adaptive 18F-FDG-PET-voxel-based dose-painting-by-numbers (DPBN) for head-and-neck cancer

  • For the volume of interest that comprised the pharyngeal constrictor muscles (PC) and the one that combined the swallowing structures (SS), both D50% and D98% levels were significantly improved in the IMAT plans, while D2% did not show on average any important differences

  • Additional file 1: Figure S1 showed similar or highly reduced D50% and D98% levels of PC and SS with up to 54.9 % for IMAT compared to IMRT

Read more

Summary

Introduction

This study investigates the implementation of a new intensity modulated arc therapy (IMAT) class solution in comparison to a 6-static beam step-and-shoot intensity modulated radiotherapy (s-IMRT) for three-phase adaptive 18F-FDG-PET-voxel-based dose-painting-by-numbers (DPBN) for head-and-neck cancer. Methods: We developed 18F-FDG-PET-voxel intensity-based IMAT employing multiple arcs and compared it to clinically used s-IMRT DPBN. Three IMAT plans using 18F-FDG-PET/CT acquired before treatment (phase I), after 8 fractions (phase II) and CT acquired after 18 fractions (phase III) were generated for each of 10 patients treated with 3 s-IMRT plans based on the same image sets. Static, dynamic and rotational IMRT are in use demonstrating comparable dose coverage and conformity [4, 5]. Because of a faster delivery, rotational techniques like intensity-modulated arc therapy (IMAT) gained widespread use over recent years. Commercial solutions to perform IMAT are currently available for as well Elekta (Crawley, UK) as Varian (Palo Alto, CA, USA)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.