Abstract

The dynamics of optical nonlinearity in the presence of gain and feedback can be complex leading to chaos in certain regimes. Temporal, spectral, spatial, or polarization instability of optical fields can emerge from chaotic response of an optical chi ^{(2)} or chi ^{(3)} nonlinear medium placed between two cavity mirrors or before a single feedback mirror. The complex mode dynamics, high-order correlations, and transition to instability in these systems are not well known. We consider a chi ^{(3)} medium with amplified four-wave mixing process and study noise and correlation between multiple optical modes. Although individual modes show intensity instability, we observe relative intensity noise reduction close to the standard quantum noise, limited by the camera speed. We observe a relative noise reduction of more than 20 dB and fourth-order intensity correlation between four spatial modes. More than 100 distinct correlated quadruple modes can be generated using this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.