Abstract
This paper presents an algorithm based on nonsubsampled contourlet transform (NSCT) and Stein's unbiased risk estimate with a linear expansion of thresholds (SURE-LET) approach for intensity image denoising. First, we analyzed the multiplicative noise model of intensity image and make the non-logarithmic transform on the noisy signal. Then, as a multiscale geometric representation tool with multi-directivity and shift-invariance, NSCT was performed to capture the geometric information of images. Finally, SURE-LET strategy was modified to minimize the estimation of the mean square error between the clean image and the denoised one in the NSCT domain. Experiments on real intensity images show that the algorithm has excellent denoising performance in terms of the peak signal-to-noise ratio (PSNR), the computation time and the visual quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Optik - International Journal for Light and Electron Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.