Abstract

Intensity-fluctuation spectroscopy (IPS) is usually considered to be complementary to conventional spectroscopy and capable of removing technical restrictions on the resolving power. However, the information provided by field spectroscopy is identical to that obtained by IFS only for fields with Gaussian statistics. For non-Gaussian fields, IFS yields essentially new information, and the present review is devoted to this aspect of IFS. It surveys experiments concerned with the investigation of the noise spectrum of resonance fluorescence and of coherent forward scattering by an atomic vapor, which provide data on the width and the structure of levels involved in atomic transitions under the conditions of dominant Doppler broadening. Fundamental and technical limitations of the method are examined. Analogous studies of fluctuation spectra of radiation scattered by macroparticles in liquids can be used to determine the time dependence of the particle form factor independently of the characteristics of translational diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.