Abstract

AbstractThe influence of sodium ion concentration in solution on the initially salt‐free conformation of bulk tRNA from baker's yeast has been investigated by means of photon correlation spectroscopy. From the measured values of translational (DT) and rotational (DR) diffusion coefficients, the semiaxes of an ellipsoid of revolution, which are hydrodynamically equivalent to the tRNA molecule, were calculated for tRNA solutions in pure H2O as well as in 0.005, 0.1, 0.5M NaCl and 0.01M MgCl2 solutions at pH 4.2 and 7.5. These data, combined with our previous studies, suggested a model which describes the formation of an ordered tRNA structure due to increasing NaCl concentrations. Furthermore, we have obtained information concerning intermolecular interactions between tRNA molecules in solution. In low‐salt or salt‐free tRNA solutions, we detected in the linewidth distribution function an extra‐fast component which can be attributed as possibly due to charge fluctuations related to the reaction of ionization of organic bases. In our light‐scattering linewidth measurements, we do not see fluctuations of charged and uncharged states directly as concentration fluctuations. Rather, we postulate a modulation of long‐range intermolecular electrostatic interactions between the tRNA molecules due to such charge fluctuations. It is this modulation which is related to the fast component of the time correlation function at finite concentrations. A quantitative theory is needed to provide a more definitive explanation of the dynamical behavior of tRNA in salt‐free or low‐salt solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.