Abstract

A method for obtaining the intensity fluctuation spectra of dynamic laser speckle patterns is introduced, which is based on the temporal modulation of the illumination and the subsequent integration of the intensity signals. This approach does not rely on the fast sampling rate to meet the Nyquist criterion, making it applicable for full-field imaging applications. The intensity fluctuation spectra created by the in-plane motion of a random phase object was investigated by using both a single-channel detector and a multichannel sensor. The power spectra obtained by using the full-field temporal modulation method were found to agree with the homodyne Doppler spectra obtained by using the method of autocorrelation and Fourier transform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.