Abstract

The effective filtering of noisy signals is one of the topical and open problems of the processing of noisy signals characterized by the presence of pulse interferences. A robust approach to intensity estimation of noise-like signal in the presence of additive uncorrelated pulse interferences has been proposed. The presence of additive uncorrelated pulse interferences leads to an increase of dispersion of registered signal at separate sections with pulse interferences. The robustness of intensity estimation is achieved by reducing the influence of sections with pulse interferences. A variety of nonlinear filtering methods has been developed that are based on detecting the intensity using lower envelope: two-parameter recursive filter, dilation, limiting the derivative and order statistics. The numerical simulation was used to perform their comparison with the known most common methods. The numerical simulation confirmed the efficiency of the approach proposed for estimating the intensity of noise-like signal in the presence of additive uncorrelated pulse interferences. The developed techniques can be applied for signal processing in means of communications, measurement instrumentation, radio astronomy, and also for image processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.