Abstract

ObjectiveTo investigate the effects of anodal transcranial direct current stimulation (a-tDCS) intensity on corticospinal excitability and affected muscle activation in individuals with chronic spinal cord injury (SCI). DesignSingle-blind, randomized, sham-controlled, crossover study. SettingMedical research institute and rehabilitation hospital. ParticipantsVolunteers (N=9) with chronic SCI and motor dysfunction in wrist extensor muscles. InterventionsThree single session exposures to 20 minutes of a-tDCS (anode over the extensor carpi radialis [ECR] muscle representation on the left primary motor cortex, cathode over the right supraorbital area) using 1mA, 2mA, or sham stimulation, delivered at rest, with at least 1 week between sessions. Main Outcome MeasuresCorticospinal excitability was assessed with motor-evoked potentials (MEPs) from the ECR muscle using surface electromyography after transcranial magnetic stimulation. Changes in spinal excitability, sensory threshold, and muscle strength were also investigated. ResultsMean MEP amplitude significantly increased by approximately 40% immediately after 2mA a-tDCS (pre: 0.36±0.1mV; post: 0.47±0.11mV; P=.001), but not with 1mA or sham. Maximal voluntary contraction measures remained unaltered across all conditions. Sensory threshold significantly decreased over time after 1mA (P=.002) and 2mA (P=.039) a-tDCS and did not change with sham. F-wave persistence showed a nonsignificant trend for increase (pre: 32%±12%; post: 41%±10%; follow-up: 46%±12%) after 2mA stimulation. No adverse effects were reported with any of the experimental conditions. ConclusionsThe a-tDCS can transiently raise corticospinal excitability to affected muscles in patients with chronic SCI after 2mA stimulation. Sensory perception can improve with both 1 and 2mA stimulation. This study gives support to the safe and effective use of a-tDCS using small electrodes in patients with SCI and highlights the importance of stimulation intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.