Abstract
Bleaching relaxation in lead salt (PbS) quantum dots (QDs) of various sizes and under different pump intensities has been studied. The observed bleaching relaxation features (particularly, shortening of the bleaching relaxation times with a decrease in the QD size and an increase of the pump-light intensity) are explained in the context of the proposed spectroscopic model. The model takes into account transitions of the excited-charge carriers both within the system of quantum-confined energy levels and the defect states of the QDs. The characteristic times of the direct electron-hole recombination, carriers trapping to the defect states, and their subsequent relaxation from these states as well as the cross sections of the ground-state and excited-state absorption of charge carriers can be evaluated from the experimental data for PbS QDs of different sizes and under different pumping conditions using this model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.