Abstract

We explore the antiresonance phenomenon, where a two-level atom is excited inside a single-mode, laser-driven cavity without appreciably exciting the field mode. Antiresonance is well known in classical physics and the excitation of the atomic and field degrees of freedom by a weak laser field can be easily understood in a classical oscillator picture. The temporal intensity correlations in the signal emitted from the atom and from the cavity, however, show strong signs of nonclassical behavior. We calculate these correlations and show how they can be interpreted in terms of a conditional quantum trajectory dynamics of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.