Abstract

The impulse discharge of single on-off neurons and a graded field potential, the proximal negative response (PNR), were simultaneously recorded with an extracellular microelectrode in the inner frog retina. Normalized amplitude-intensity functions for the on-response of the PNR and the neuron's post-stimulus time histogram (PSTH) were nearly coincident and typically showed a dynamic range spanning approximately 2 log units of intensity. Thus a nearly linear relation is found between the amplitude of the PNR and the neuron's PSTH. A neuron's PSTH amplitude and maximum instantaneous frequency of discharge were usually highly correlated, but occasional marked disparities indicate that temporal jitter of the first spike latency is an additional, relatively independent variable influencing PSTH amplitude. It typically changes by a factor of 20-30 over the intensity range. These and other findings have implications for the functional significance of the PNR and the PSTH, for a possible linear link between amacrine and on-off ganglion cells, and for a mechanism of intensity coding in which temporal jitter of latency exerts a major role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call