Abstract

BackgroundRatio-based analysis is the current standard for the analysis of dual-color microarray data. Indeed, this method provides a powerful means to account for potential technical variations such as differences in background signal, spot size and spot concentration. However, current high density dual-color array platforms are of very high quality, and inter-array variance has become much less pronounced. We therefore raised the question whether it is feasible to use an intensity-based analysis rather than ratio-based analysis of dual-color microarray datasets. Furthermore, we compared performance of both ratio- and intensity-based analyses in terms of reproducibility and sensitivity for differential gene expression.ResultsBy analyzing three distinct and technically replicated datasets with either ratio- or intensity-based models, we determined that, when applied to the same dataset, intensity-based analysis of dual-color gene expression experiments yields 1) more reproducible results, and 2) is more sensitive in the detection of differentially expressed genes. These effects were most pronounced in experiments with large biological variation and complex hybridization designs. Furthermore, a power analysis revealed that for direct two-group comparisons above a certain sample size, ratio-based models have higher power, although the difference with intensity-based models is very small.ConclusionsIntensity-based analysis of dual-color datasets results in more reproducible results and increased sensitivity in the detection of differential gene expression than the analysis of the same dataset with ratio-based analysis. Complex dual-color setups such as interwoven loop designs benefit most from ignoring the array factor. The applicability of our approach to array platforms other than dual-color needs to be further investigated.

Highlights

  • Ratio-based analysis is the current standard for the analysis of dual-color microarray data

  • Intensity-based analysis yields comparable results to ratio-based analysis, but is more sensitive in detecting differential gene expression To determine the feasibility of intensity-based analysis of dual-color arrays, we performed a microarray experiment in which the effects of 4 different treatments (T1, T2, T3 and T4) were investigated using two keratinocyte-derived cell lines by measuring transcript levels on Agilent 4 × 44K Whole Human Genome arrays

  • We observed a strong linear correlation between the directly measured ratios, and the in silico reconstructed ratios based on separate hybridizations. To investigate whether these findings translate to other datasets as well, we analyzed a publicly available dataset in which two commercially available samples were hybridized 10 times on Agilent dual-color microarrays

Read more

Summary

Introduction

Ratio-based analysis is the current standard for the analysis of dual-color microarray data. This method provides a powerful means to account for potential technical variations such as differences in background signal, spot size and spot concentration. The resulting gene list serves as a starting point for further investigations, such as constructing new hypotheses, or the in vitro characterization of putatively identified genes. Due to their dimensionality (few observations, many variables), microarray experiments suffer from high rates of false positive and negative findings [4]. The issue of reproducibility is of utmost importance in array experiments

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.