Abstract

Although mathematical models do not fully match reality, robustness of dynamical objects to perturbation helps bridge from theoretical to real-world dynamical systems. Classical theories of structural stability and isolated invariant sets treat robustness of qualitative dynamics to sufficiently small errors. But they do not indicate just how large a perturbation can become before the qualitative behavior of our system changes fundamentally. Here we introduce a quantity, intensity of attraction, that measures the robustness of attractors in metric terms. Working in the setting of ordinary differential equations on $\mathbb{R}^n$, we consider robustness to vector field perturbations that are time dependent or independent. We define intensity in a control-theoretic framework, based on the magnitude of control needed to steer trajectories out of a domain of attraction. Our main result is that intensity also quantifies the robustness of an attractor to time-independent vector field perturbations; we prove this by connecting the reachable sets of control theory to isolating blocks of Conley theory. In addition to treating classical questions of robustness in a new metric framework, intensity of attraction offers a novel tool for resilience quantification in ecological applications. Unlike many measurements of resilience, intensity detects the strength of transient dynamics in a domain of attraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call