Abstract

We develop a uniform type theory that integrates intensionality, extensionality and proof irrelevance as judgmental concepts. Any object may be treated intensionally (subject only to /spl alpha/-conversion), extensionally (subject also to /spl beta//spl eta/-conversion), or as irrelevant (equal to any other object at the same type), depending on where it occurs. Modal restrictions developed by R. Harper et al. (2000) for single types are generalized and employed to guarantee consistency between these views of objects. Potential applications are in logical frameworks, functional programming and the foundations of first-order modal logics. Our type theory contrasts with previous approaches that, a priori, distinguished propositions (whose proofs are all identified - only their existence is important) from specifications (whose implementations are subject to some definitional equalities).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.