Abstract

Type-and-effect systems are a powerful tool for program construction and verification. We describe intensional effect polymorphism, a new foundation for effect systems that integrates static and dynamic effect checking. Our system allows the effect of polymorphic code to be intensionally inspected through a lightweight notion of dynamic typing. When coupled with parametric polymorphism, the powerful system utilizes runtime information to enable precise effect reasoning, while at the same time retains strong type safety guarantees. We build our ideas on top of an imperative core calculus with regions. The technical innovations of our design include a relational notion of effect checking, the use of bounded existential types to capture the subtle interactions between static typing and dynamic typing, and a differential alignment strategy to achieve efficiency in dynamic typing. We demonstrate the applications of intensional effect polymorphism in concurrent programming, security, graphical user interface access, and memoization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call