Abstract

ZrCoBi-based half-Heuslers have great potential in power generation applications because of their high thermoelectric performance in both p- and n-type constituents. In this work, n-type ZrCoBi with improved thermoelectric performance has been realized by intensifying the phonon scattering via noble metal doping, e.g., Pd and Pt doping. The carrier concentration was effectively tuned to the optimal range, and the lattice thermal conductivity was greatly suppressed via the strong strain field and mass fluctuation scattering brought about by the large difference in atomic size and mass between Pd or Pt and Co. Consequently, the state-of-art figure of merit zT ∼1 was achieved in Pd- or Pt-doped ZrCoBi. In addition, the average zTavg values for ZrCo0.95Pd0.05Bi and ZrCo0.925Pt0.075Bi have reached 0.58 and 0.51, respectively, which are higher than those of most of the reported n-type ZrCoBi-based and ZrCoSb-based half-Heusler alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.