Abstract

Lignin-derived styrene derivatives are versatile building blocks for the manufacture of biobased polymers. As shown previously, phenol-protected hydroxystyrenes are accessible under industrially sound conditions (>100 g L-1, >95% yield) by subjecting biogenic phenolic acids to enzymatic decarboxylation and base-catalyzed acylation in nonaqueous media (wet cyclopentyl methyl ether, CPME). Herein, we demonstrate the production of 1 kg of 4-acetoxy-3-methoxy-styrene in a 10 L reactor and present practical adjustments to the up- and downstream processing that warrant a straightforward process and high isolated yields. Additionally, an environmental assessment is conducted, starting with a thorough E factor analysis to identify the sources that contribute most to the environmental burden (solvent and downstream processing). Also, the total CO2 production of the process is studied, including contributions from energy use and the treatment of generated wastes. The energy impact is evaluated through thermodynamic analysis, and the environmental footprint contributions by wastes-organic and aqueous fractions-are assessed based on CO2 emissions from solvent incineration and wastewater treatment, respectively. Overall, the holistic assessment of the process, its optimization, scale-up, product isolation, and environmental analysis indicate the feasibility of multistep chemoenzymatic reactions to deliver high-volume, low-value chemicals from biorefineries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.