Abstract
Decontamination of graphite structural elements and recovery of uranium is crucial for waste minimization and recycle of nuclear fuel elements. Feasibility of intensified dissolution of uranium-impregnated graphite substrate using ultrasound has been studied with objective of establishing the effect of operating parameters and the kinetics of sonocatalytic dissolution of uranium in nitric acid. The effect of operating frequency and acoustic intensity as well as the acid concentration and temperature on the dissolution of metal has been elucidated. It was observed that at lower acid concentrations (6M-8M), the dissolution ratio increases by 15% on increasing the bath temperature from 45 to 70°C. At higher acid concentration (>10M), the increase was only around 5-7% for a similar change in temperature. With 12M HNO3, pitting was also observed on the graphite surface along with erosion due to high local reaction rates in the presence of ultrasound. For higher frequency of applied ultrasound, lower dissolution rate of uranium was observed though it also leads to high rates of erosion of the substrate. It was thus established that suitable optimization of frequency is required based on the nature of the substrate and the choice of recycling it. The dissolution rate was also demonstrated to increase with acoustic intensity till it reaches to the maximum at the observed optimum (1.2W/cm2 at 33kHz). Comparison with silent conditions revealed that enhanced rate was obtained due to the use of ultrasound under optimum conditions. The work has demonstrated the effective application of ultrasound for intensifying the extent of dissolution of metal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.