Abstract

Sulfur-based autotrophic denitrification (SAD) is a promising low-carbon approach to tackle nitrate pollution. However, practical SAD reactor implementation faces challenges of slow denitrification rates and prolonged start-up periods. In this work, a fluidized-bed denitrification reactor with suspended composite fillers immobilized with elemental sulfur and SAD bacteria was constructed. The reactor reaches a steady state within the first day of operation. A denitrification rate of 0.61 g N L−1 d−1 was realized, which is 2.4-fold higher than that in the packed-bed reactor. Mixotrophic denitrification prevailed during the start-up period, while the SAD process became the predominant pathway (>70%) after several days of operation. The prevailing bacteria in the fillers, notably Thiobacillus, are enriched during denitrification operations. Overall, this study highlights the impressive denitrification capabilities of the fluidized SAD reactor with microbial fillers, providing valuable insights for enhancing denitrification techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.