Abstract

AbstractThe observed increase of convective extreme precipitation intensities with temperature beyond the Clausius‐Clapeyron rate has recently directed attention to nonequilibrium processes that might cause the increase. While out‐of‐equilibrium simulations with perturbed heating conditions show clear increases in convective precipitation intensities, it has so far remained unclear, to which extent precipitation intensities can increase, when the atmosphere is in “perpetual equilibrium” (PE). We use the term PE to describe periodically forced diurnal cycles that eventually yield an approximately repetitive atmospheric response from day to day. In PE, as defined here, precipitation extremes increase at rates beyond the Clausius‐Clapeyron rate. When analyzing causes for the increase, we find the variance in near‐surface temperature to increase significantly as precipitation builds up throughout the day and that this temperature variance is larger when surface heating is increased. We propose that enhanced rain evaporation may drive a feedback, by which cold pool activity, and the possible collision of cold pool gust fronts, is strengthened—thereby intensifying subsequent convective updrafts and their precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.