Abstract

The bioleaching of chalcopyrite concentrate, intensified by the adapted mesophilic culture in the continuous stirred tank reactors (CSTR) was investigated. The cumulative bioleaching efficiency of copper was found to be increased from 34.8% to 49.3% in CSTR-1, 40.3% to 71.2% in CSTR-2, and 44.3% to 73.8% in CSTR-3, while the temperature was elevated from 30 to 37 °C, respectively; whereas, the pulp density (10%, w/v), agitation speed (350 rpm), aeration (400 cc/min), and retention time (7 days across the three reactors) were also optimized to keep constant. Further, the activation energy calculated for copper dissolution under the continuous flow indicated that the surface-diffusion was the overall rate-limiting step for the bioleaching process. Instrumental analysis of solid samples could reveal the degradation pathways of chalcopyrite bioleaching as: CuFeS2 → Cu2S → Cu0.3333Fe0.6667S → H9Fe3O18S8. It follows a complex mechanism that includes the occurrence of polysulfide and cooperative mechanism along with the passivation onto mineral surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.