Abstract
Background/Aims: Although small cell lung cancer (SCLC) is sensitive to initial chemotherapy, patients experience tumor recurrence and metastasis, leading to treatment failure. Autophagy as a protective pattern for cell survival in the harsh environment plays an important role in chemoresistance. However, the role of Beclin-1, a key regulator of autophagy in the drug-resistance of SCLC cells is still poorly understood. In the current study, we focused on the effect and regulation of Beclin-1 in chemoresistance of SCLC cells. Methods: We analyzed the levels of Beclin-1 in etoposide/cisplatin (EP) -resistant and -sensitive cell lines, as well as the relationship between Beclin-1 and patients’ chemosensitivity. The function of Beclin-1 in chemoresistant SCLC cells in vitro was measured by MTT, WB, colony formation and flow cytometric analysis. Further rescue experiment was performed after co-transfected with siBeclin-1 and miR-30a mimics or inhibitor. Results: Beclin-1 was upregulated in drug-resistant cells and patients with lower sensitivity to etoposide/cisplatin therapy. Downregulated Beclin-1 attenuated drug sensitivity and colony formation ability of chemoresistant cells. Moreover, inhibition of Beclin-1 resulted in a dramatic decline of autophagy and increase of apoptosis in drug-resistant cells, accompanied by a remarkable reduction in S phase and a raise in G2/M phase of cell cycle. The transfection with miR-30a-5p mimics exhibited an opposite effect. In addition, inhibition of Beclin-1 could partly reverse the effect induced by miR-30a-5p suppression in drug-sensitive cells. Conclusion: Beclin-1 regulated by miR-30a-5p plays a notable role in the drug-resistance of SCLC. Inhibition of Beclin-1 by induction of miR-30a-5p may improve the therapeutic outcome via resensitizing the drug-resistant cells to chemotherapy in SCLC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.