Abstract

Long-term changes in the East Asian summer monsoon (EASM) lifecycle since 1979 are analyzed based on observational datasets and historical simulations of the Coupled Model Intercomparison Project Phase 6 (CMIP6). According to the observation, the active and break phases of EASM have intensified resulting in a shorter but stronger rainy season, followed by a longer dry spell. This intensification in the active-phase precipitation is accompanied by increased lower tropospheric southwesterly wind and subsequent convergence of water vapor flux. These changes are accompanied by the widely reported westward extension of the North Pacific Subtropical High, which has been associated with the warming climate. CMIP6 models generally underestimated the observed intensification of the EASM lifecycle and the monsoon precipitation. However, some of the models did simulate the intensified EASM lifecycle similar to that observed. The result highlights the reasonable performance on EASM shown in some CMIP6 models and those simulations lend support to a dynamically-driven intensification of the EASM lifecycle in the warmer climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.