Abstract

AbstractWildfires have long been regarded as one chief culprit in regional air pollution, and pose great impacts on climate change. Although climate forcing of wildfire smoke has been widely investigated, its influence on synoptic systems remains unclear. Based on measurement and modeling analysis, the impact of wildfire smoke on the development of a mid‐latitude cyclone was revealed for Canadian wildfires in early June of 2023. The radiative forcing induced by smoke at surface and in the atmosphere reached up to −150 and 100 W m−2, posing opposite tendencies of atmospheric stratification over the land and ocean. Such perturbations contributed to the enhancement and stagnation of the cyclone, which favored the transport of smoke from the fire‐intensive region, indicated by nearly 40% increment of PM2.5 mass flux. With escalating wildfire risk in the future, the inclusion of smoke aerosols' impacts on meteorology in weather forecast models is of great importance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.