Abstract
Abstract The cross-basin interaction of the second EOFs of the interannual SST in the North Atlantic and North Pacific—the North Atlantic tripole (NAT) SST and Pacific meridional mode (PMM)—is discussed. Observations revealed that the total variances of the NAT and PMM have simultaneously experienced interdecadal enhancement since the 1990s. Wavelet analysis indicated that this enhancement was associated with the interdecadal variations (8–16 years) of the NAT and PMM, which have become significantly and positively coherent since the 1990s. This interdecadal variation also changed the interannual NAT–PMM relationship from negative to positive. The regression analysis indicated that the NAT forced a Matsuno–Gill circulation anomaly, which had a substantial lag impact on the PMM SST through wind–evaporation–SST feedback. Additionally, the NAT induced oceanic temperature advection, which also partially contributed to the PMM SST. On the other hand, the PMM-associated middle–upper atmospheric teleconnection, a North Atlantic Oscillation (NAO)-like circulation anomaly in the North Atlantic, gave positive feedback to the NAT. The numerical experiments suggest that the enhancement of the NAT–PMM interaction since the 1990s was associated with the eastward shift of PMM-associated convection, which was further enhanced by eastward extension of the upper-level extratropical jet in the North Pacific. Significance Statement This study aimed at a better understanding of the cross-basin interaction between the North Atlantic and North Pacific. Our study indicates that the cross-basin interaction in the interannual sea surface temperature between the Pacific meridional mode (PMM) and North Atlantic tripole (NAT) became stronger since the 1990s. The observation yields that this enhancement was associated with the interdecadal variations of the NAT and PMM, which have become significantly and positively coherent since the 1990s. The observation yields that the NAT-forced atmospheric large-scale circulation anomaly had a substantial lag impact on the PMM. On the other hand, the PMM-induced middle–upper atmospheric teleconnection, a North Atlantic Oscillation (NAO)-like circulation anomaly, gave positive feedback to the NAT. The numerical experiments suggest that the enhancement of the NAT–PMM interaction since the 1990s primarily resulted from the eastward shift of PMM-associated convection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.