Abstract

<p>Due to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming thereby has two opposing influences. Increasing humidity enables potentially intense snowfall, whereas warming temperatures decrease the likelihood of snowfall in the first place. Here we show an intensification of extreme snowfall under future warming, which is robust across all global coupled climate models when they are bias-corrected with observational data. While mean daily snowfall decreases drastically in the model ensemble, both the 99th and the 99.9th percentiles of daily snowfall increase strongly in the next decades. Additionally, the magnitude of high snowfall events increases, which is likely to pose considerable challenge to municipalities in mid to high northern latitudes. We propose that the almost unchanged occurrence of temperatures just below the freezing point of water in combination with the strengthening of the hydrological cycle enables this intensification of extreme snowfall. Thus extreme snowfall events are likely to become an increasingly important impact of climate change on society in the next decades.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.