Abstract
An effective conversion of lignocellulose into fermentable sugars is a key step in producing bioethanol in an eco-friendly and cost effective manner. In this study, the effect of ultrasound on enzymatic hydrolysis of newspaper, a potential feedstock for bioethanol production due to its high cellulosic content, was investigated. The effect of substrate loading, enzyme loading, temperature, ultrasonic power and duty cycle on the hydrolysis has been studied. Optimum conditions for conventional enzymatic hydrolysis were substrate loading of 5% (w/v), enzyme loading of 0.14% (w/v), temperature of 323K, and under these conditions and 72h of hydrolysis, reducing sugar yield of 11.569g/L was obtained. In case of ultrasound-assisted enzymatic hydrolysis approach, optimum conditions obtained were substrate loading of 3% (w/v), enzyme loading of 0.8% (w/v), sonication power of 60W, duty cycle of 70%, hydrolysis time of 6.5h and the reducing sugar yield obtained under these conditions was 27.6g/L. Approximately 2.4 times increase in the release of reducing sugar concentration was obtained by the ultrasound-assisted enzymatic hydrolysis approach. Results indicate that there is a synergistic effect obtained from the combination of ultrasound and enzymes which lowers the diffusion-limiting barrier to enzyme/substrate binding and results in an increase in reaction rate. The experimental data were also fitted in a simple three parameter kinetic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.