Abstract
A stator–rotor–stator spinning disc reactor is presented, which aims at intensification of convective heat‐transfer rates for chemical conversion processes. Single phase fluid‐rotor heat‐transfer coefficients hr are presented for rotor angular velocities rad s−1 and volumetric throughflow rates m3s−1. The values of hr are independent of and increase from 0.95 kWm−2K−1 at ω = 0 rad s−1 to 34 kWm−2K−1 at ω = 157 rad s−1. This is a factor 2–3 higher than values achievable in passively enhanced reactor‐heat exchangers, due to the 1–2 orders of magnitude larger specific energy input achievable in the stator–rotor–stator spinning disc reactor. Moreover, as hr is independent of , the heat‐transfer rates are independent of residence time. Together with the high mass‐transfer rates reported for rotor–stator spinning disc reactors, this makes the stator–rotor–stator spinning disc reactor a promising tool to intensify heat‐transfer rates for highly exothermal chemical reactions. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2307–2318, 2015
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.