Abstract

The reactions between the diphosphino-alkynyl gold complexes (XC6H4C2Au)PR2-C6H4-PR2(AuC2C6H4X) with Cu+ lead to the formation of a family of heterometallic clusters of the general formula [{Au3Cu2(C2C6H4X)6}Au3(PR2C6H4PR2)3][PF6]2 (X = NO2, H, OMe, NMe2; R = C6H5, NC4H4). These complexes adopt the same structural pattern and consist of a heterometallic alkynyl cluster [Au3Cu2(C2C6H4X)6]- "wrapped" by the cationic [Au3(PR2C6H4PR2)3]3+ "belt". The novel compounds were characterized by NMR spectroscopy and ESI-MS measurements. A systematic study of their luminescence properties revealed efficient room-temperature phosphorescence in solution with remarkably weak quenching by molecular oxygen. The photophysical experiments demonstrate that the increase in the electron donor ability of the alkynyl ligands and the electron-withdrawing character of the diphosphines results in the bathochromic shift of emission maxima (in the 576-686 nm range) and a decrease in the luminescence quantum yield. The electronic structure calculations showed that variations of X or R substituents have very little effect on the structural parameters but display a significant influence on the electronic properties of the clusters and characteristics of luminescence. The metal-centered triplet emission within the heterometallic alkynyl cluster is suggested to play a key role in the observed phosphorescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.