Abstract

Tin oxide thin films were prepared by sol–gel dip coating technique using Tin(II) chloride dihydrate (SnCl2·2H2O) as the precursor. X-ray diffraction pattern of SnO2 thin film annealed at 450 °C showed tetragonal phase with a particle size 8.2 nm. Scanning electron microscopy images showed crack free surface with agglomeration of grains. The electrical resistance decreased with increase in annealing temperature. The transmittance spectra gave transmittance greater than 80 % which found applications in anti-reflection coatings. The energy band gap values (3.78–3.87 eV) increased with the increase in annealing temperature, which was due to Moss–Burstein shift. Photoluminescence spectra gave an intense UV emission band at 396 nm. ‘‘Blue shift’’ of the films with annealing temperature originated from the formation of strain in the film due to lattice distortions. Nanocrystalline SnO2 thin film with wide band gap and short wavelength luminescence emission can serve as a better luminescent material for light-emitting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.