Abstract

By using intense terahertz(THz) monocycle pulses, nonlinear light-matter interaction in aligned semiconducting single-walled carbon nanotubes(SWNTs) embedded in a polymer film was investigated. THz electric-field-induced ultrafast Stark effect of one-dimensional excitons in SWNTs was observed at room temperature, suggesting the potential functionality of SWNTs for high speed electro-optic devices operating at telecom wavelength with a THz bandwidth. When the peak electric field amplitude exceeds 200 kV/cm, the generation of excitons by the THz pump becomes prominent. The mechanism is described by the above-gap excitation of electrons and holes in SWNTs due to the impact excitation process induced by the intense THz electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call