Abstract

Harmonics generated at solid surfaces interacting with relativistically strong laser pulses are a promising route towards intense attosecond pulses. In order to obtain single attosecond pulses one can use few-cycle laser pulses with carrier-envelope phase stabilization. However, it appears feasible to use longer pulses using polarization gating—the technique known for a long time from gas harmonics. In this paper, we investigate in detail a specific approach to this technique on the basis of one-dimensional-particle-in-cell (1D PIC) simulations, applied to surface harmonics. We show that under realistic conditions polarization gating results in significant temporal confinement of the harmonics emission allowing thus the generation of intense single attosecond pulses. We study the parameters needed for gating only one attosecond pulse and show that this technique is applicable to both normal and oblique incidence geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.