Abstract

Well-ordered Au-nanorod arrays were fabricated using the focused ion beam method (denoted as fibAu_NR). Au or Ag nanoclusters (NCs) of various sizes and dimensions were then deposited on the fibAu_NR arrays using electron beam deposition to improve the surface-enhanced Raman scattering (SERS) effect, which was verified using a low concentration of crystal violet (10(-)(5)M) as the probe molecule. An enhancement factor of 6.92 × 10(8) was obtained for NCsfibAu_NR, which is attributed to the combination of intra-NC and NR localized surface plasmon resonance. When 4-aminobenzenethiol (4-ABT)-coated Au or Ag nanoparticles (NPs) were attached to NCsfibAu_NR, the small gaps between 4-ABT-coated NPs and intra-NCs allowed detection at the single-molecule level. Hotspots formed at the interfaces of NCs/NRs and NPs/NCs at a high density, producing a strong local electromagnetic effect. Raman spectra from as-prepared type I collagen (Col-I) and Ag-NP-coated Col-I fibers on NCsfibAu_NR were compared to determine the quantity of amino acids in their triple helix structure. Various concentrations of matrix-metalloproteinase-9-digested Col-I fibers on NCsfibAu_NR were qualitatively examined at a Raman laser wavelength of 785nm to determine the changes of amino acids in the Col-I fiber structure. The results can be used to monitor the growth of healing Col-I fibers in a micro-environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.