Abstract

The effects of target density on proton acceleration driven by an intense sub-ps laser pulse are investigated using two-dimensional hybrid particle-in-cell simulations. Results show that at higher density the target-normal-sheath acceleration (TNSA) is more effective than shock acceleration for protons from a plastic target. Furthermore a lower-density target is favorable to higher energy of the TNSA protons. Moreover, the longitudinal electric fields at the target surfaces may reveal typical inhomogeneous structures for a long acceleration time. The conversion efficiency of laser energy into particle (electron, proton, and C(+) ion) energy is found to increase with decreasing target density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call