Abstract

Ultra-high intensity (> 1018 W/cm2), femtosecond (~30 fs) laser induced fast electron transport in a transparent dielectric has been studied for two laser systems having three orders of magnitude different peak to pedestal intensity contrast, using ultrafast time-resolved shadowgraphy. Use of a 400 nm femtosecond pulse as a probe enables the exclusive visualization of the dynamics of highest density electrons (> 7 × 1021 cm-3) observed so far. High picosecond contrast (~109) results in greater coupling of peak laser energy to the plasma electrons, enabling long (~1 mm), collimated (divergence angle ~2°) transport of fast electrons inside the dielectric medium at relativistic speeds (~0.66c). In comparison, the laser system with a contrast of ~106 has a large pre-plasma, limiting the coupling of laser energy to the solid and yielding limited fast electron injection into the dielectric. In the lower contrast case, bulk of the electrons expand as a cloud inside the medium with an order of magnitude lower speed than that of the fast electrons obtained with the high contrast laser. The expansion speed of the plasma towards vacuum is similar for the two contrasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.