Abstract

The root microbiome is composed of an incredibly diverse microbial community that provides services to the plant. A major question in rhizosphere research is how species in root microbiome communities interact with each other and their host. In the nutrient mutualism between host plants and arbuscular mycorrhizal fungi (AMF), competition often leads to certain species dominating host colonization, with the outcome being dependent on environmental conditions. In the past, it has been difficult to quantify the abundance of closely related species and track competitive interactions in different regions of the rhizosphere, specifically within and outside the host. Here, we used an artificial root system (in vitro root organ cultures) to investigate intraradical (within the root) and extraradical (outside the root) competitive interactions between two closely related AMF species, Rhizophagus irregularis and Glomus aggregatum, under different phosphorus availabilities. We found that competitive interactions between AMF species reduced overall fungal abundance. R.irregularis was consistently the most abundant symbiont for both intraradical and extraradical colonization. Competition was the most intense for resources within the host, where both species negatively affected each other's abundance. We found the investment ratio (i.e. extraradical abundance/intraradical abundance) shifted for both species depending on whether competitors were present or not. Phosphorus availability did not change the outcome of these interactions. Our results suggest that studies on competitive interactions should focus on intraradical colonization dynamics and consider how changes in investment ratio are mediated by fungal species interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call