Abstract

We can distinguish between two different ways in which mathematics is applied in science: when mathematics is introduced and developed in the context of a particular scientific application; when mathematics is used in the context of a particular scientific application but it has been developed independently from that application. Nevertheless, there might also exist intermediate cases in which mathematics is developed independently from an application but it is nonetheless introduced in the context of that particular application. In this paper I present a case study, that of the Lagrange multipliers, which concerns such type of intermediate application. I offer a reconstruction of how Lagrange developed the method of multipliers and I argue that the philosophical significance of this case-study analysis is twofold. In the context of the applicability debate, my historically-driven considerations pull towards the reasonable effectiveness of mathematics in science. Secondly, I maintain that the practice of applying the same mathematical result in different scientific settings can be regarded as a form of crosschecking that contributes to the objectivity of a mathematical result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.