Abstract
In this paper, a novel intelligent-based fault tolerant control (FTC) framework is proposed to solve the fault tolerant tracking control problem for unknown nonlinear multi-input multi-output (MIMO) systems. To eliminate the effect of faults, a neural network model adapted with the extended Kalman filter (EKF) is created to online identify the unknown systems, and then the steepest descent and evolutionary programming (EP) method is utilized to find a self-tuning proportional-integral-derivative (PID) controller for the adapted neural network. The resulted PID FTC controller can not only achieve the tracking objective but also can maintain the stability and the expected performance when faults occur in system. Finally, a numerical example is given to illustrate the effectiveness of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.