Abstract
In this paper, machine learning techniques are used to enhance the performances of conventional Web proxy caching policies such as Least-Recently-Used (LRU), Greedy-Dual-Size (GDS) and Greedy-Dual-Size-Frequency (GDSF). A support vector machine (SVM) and a decision tree (C4.5) are intelligently incorporated with conventional Web proxy caching techniques to form intelligent caching approaches known as SVM–LRU, SVM–GDSF and C4.5–GDS. The proposed intelligent approaches are evaluated by trace-driven simulation and compared with the most relevant Web proxy caching polices. Experimental results have revealed that the proposed SVM–LRU, SVM–GDSF and C4.5–GDS significantly improve the performances of LRU, GDSF and GDS respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.