Abstract

The human radial artery pulse carries a rich array of biomedical information. Accurate detection of pulse signal waveform and the identification of the corresponding pulse condition are helpful in understanding the health status of the human body. In the process of pulse detection, there are some problems, such as inaccurate location of radial artery key points, poor signal noise reduction effect and low accuracy of pulse recognition. In this system, the pulse signal waveform is collected by the main control circuit and the new piezoelectric sensor array combined with the wearable wristband, creating the hardware circuit. The key points of radial artery are located by an adaptive pulse finding algorithm. The pulse signal is denoised by wavelet transform, iterative sliding window and prediction reconstruction algorithm. The slippery pulse and the normal pulse are recognized by feature extraction and classification algorithm, so as to analyze the health status of the human body. The system has accurate pulse positioning, good noise reduction effect, and the accuracy of intelligent analysis is up to 98.4%, which can meet the needs of family health care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call