Abstract

A self-tuning fuzzy PID (ST-FPID) control scheme is implemented within a joint interactive (Matlab/Simulink/Fluent) co-simulation framework for effective two degrees of freedom (2DOF) vortex-induced vibration (VIV) control of an elastically-mounted circular cylinder in laminar cross-flow of incompressible non-Newtonian power-law fluids based on the control action of a single transverse force actuator. The model-free controller, which systematically tunes the control parameters online in real time based on given rules, is well-known to be highly advantageous over the previously employed conventional PID controllers. It is particularly capable of handling the intricate non-linear dynamic effects inherent in the complex fluid rheology of non-Newtonian flow past the cylinder in presence of unmodeled system dynamics, high parametric uncertainties, diverse operational conditions, and time-varying external disturbances and control signals. Extensive numerical simulations reveal that the complex shear-thinning and shear-thickening behaviors of fluid viscosity can substantially influence the cylinder dynamic response, applied hydrodynamic forces, and flow structure. In particular, effectiveness and high performance of the adopted ST-FPID control strategy in substantial suppression of the high amplitude coupled 2DOF VIV of the elastically-mounted cylinder at selected critical reduced velocities in the lock-in region are established for a wide range of power-law index parameters (e.g., up to 83% reduction in RMS value of cylinder cross-flow displacement and up to 35% reduction in RMS value of cylinder in-line displacement for n=1and U* = 5 at Re = 100). Also, the vigorous action of the error-driven ST-FPID controller in forcing the high strength vortex shedding patterns of the uncontrolled cylinder out of the lock-in condition into the classical von Kármán vortex street of 2S-type mode of moderately weaker strengths is verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call