Abstract

Convolutional neural networks (CNNs) have been widely applied to machinery health management in recent years, whereas research on data-driven denoising methods is relatively limited. Therefore, this paper proposes a robust denoising method based on a non-local fully convolutional neural network (NL-FCNN). In this neural network, the Leaky-ReLU activation function is employed to maintain the information contained in the negative value of the signal. The wide kernel principle is also adopted to enlarge the receptive field. Lastly, the non-local means (NLM) is utilized to construct non-local block (NLB), which could efficiently enhance the long-range dependencies learning ability of the network. This block could enormously improve the denoising performance of the network. Moreover, the proposed method exhibits better performance compared with the three conventional denoising methods under multiple noise levels on the Case Western Reserve University (CWRU) motor bearing dataset. Ultimately, we also demonstrate its application to rolling bearing fault diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call