Abstract

This paper proposes an intelligent seamless transition controller for smooth transition between grid-connected (GC) and standalone modes of distributed generation (DG) units in the grid. The development of this seamless controller contributes to two main processes in the transition modes: the synchronization process and an islanding process. For the synchronization process, the stationary reference frame phase-locked loop (SRF-PLL) associated with the voltage source inverter (VSI) is modified using the frequency, voltage deviation, and phase angle information. Furthermore, the islanding process is classified as intentional and unintentional islanding scenarios for achieving efficient transition control. Here, the intentional islanding process is achieved with the information that is available in the system due to the planned disconnection. For the unintentional islanding process, a fuzzy inference system (FIS) is used to modify the conventional droop control using the information of change in active power, voltage, and frequency. To identify the action of the proposed approach during the transition process, numerical simulations are conducted with the hardware-in-loop (HIL) simulator by developing a 10kWp three-phase grid-connected DG system. The results identified the efficient control of the VSI for both islanding and grid connection processes. In the islanding conditions, the proposed controller provides advantage with less detection and disconnection time, and during synchronization, it instantly minimizes the phase-angle deviation to achieve efficient control.

Highlights

  • The increasing renewable energy installations has led to the formation of distributed generation networks (DGs), which tend to support the grids by sharing the load and reducing the peak demand on the grid [1]

  • The seamless transition control for grid-connected operation of a threephase DG unit is achieved by modifying the conventional control and by introducing intelligent control mechanisms

  • The developed approach is achieved by initially dividing the transition control into two processes: an islanding process and synchronization process

Read more

Summary

Introduction

The increasing renewable energy installations has led to the formation of distributed generation networks (DGs), which tend to support the grids by sharing the load and reducing the peak demand on the grid [1]. Improve the operating condition of the system with a fuzzy controller during the transition process, especially under transients in the system operation The details of these aspects are further discussed as follows: In Section 2, the system configuration of the grid-connected DG unit is discussed, and the model of the VSI is derived. SSyysstteemm CCoonnffiigguurraattiioonn aanndd MMooddeell DDeerriivvaattiioonn TThhee ggeenneerraalloovveerrvvieiewwofoaf tahtrheere-peh-pahseasgerigdr-icdo-ncnoencnteedctdedistdriibsturtiebdutgeednegreantieornat(iDonG)(DunGit) uwnitiht wa irtehsiastirvees-iisntidvuec-itnivdeu(cRtiLv)elo(RadL)isloshadowisnsihnoFwignuirne 1F.igTuhries c1o.nTfihgius rcaotniofnighuarsataiopnrihmaasrya piac(elsno3otnnrav-anideφmndenrrd.gRVeatTaycerLSlythrIoes)el(odneo3csunea-oawφerdonncri.pdnegtVcTeyewhsShrctsaItieaS)eottn1hidcusodoawranaatnctileDtnotohtcefhwnChectee-tihgDetSporehd1iCopdDaaieanbstGrtDtiaotdthtoCouhieefosne-otDncpifgotcoC.ootrmihifAnndbemttvnohssoeooeyiirfnddsstDcteteecoerGcaommoolaufnutnmpihvntsdlhroeiiuetenrna.estgeAe-stcphyrdo(nPhrsuatetCaionpeedsmdCl-aeeipnc)aavhhgiltsohaitte(hlshrPuvteorraCseeeugveeeCtgdeoh--h)pplesttthohaoahgauganrrsaserioedLcecushe-CvvgociiooeohusfivlnlrttlacecnataoneegegtnrceLehistnaCeeissnvddoogdefeuuiarrrlrrRittnedcceeddLeerriassctohnesmidaeirnedgraisdtwheitmh aRign agnrdidLwg ictohmRpgoannedntsLgpecropmhpaosne.enTthsepmerapjohracshe.alTlehnegme awjoitrhchthailslceonngfiegwuriathtiothnisisctoonmfigaiunrtaatiinonvoisltatogemaanidntfarienqvuoenltcaygeatatnhde fPrCeqCuaenndcycoaot rtdhienPatCeCthaenodpceoraotridoinnoaf treectlhoesuorpeesraantidonprooftreecctilvoesurreelasyasnfdorpsraofteecatnivdeqrueilcakysdifsocrosnanfeecatinodnqouf iDckGds ifsrcoomnntheectuiotniliotyf DduGrsinfrgomthethgeruidti-lsiitdyedaubrninogrmthaelgitrieids-wsiditehacbonmorpmliaalnitcieestowtihthe cgormidpslitaanncdeatrodtsh[e2g5,r2id6]s. taTnhdisaorpdesra[2ti5o,n26a]l.sTohinisvooplveersataiuontoamlsaoticinrveocolvnenseacutitnogm, oartiicnrteecrvoennnteicotninogf,tohre ionpteerrvaetonrtitoonreocflothsee othpeerDatGorctoonrneeccltoisoentwheitDh Gthceognrnidecatifotenrwthitehatbhneogrrmidalaitfyteristhcleeaarbendo.rmAalllitthyeissecolepaerreadt.ioAnlsl trheqesueiroepthereastyiosntesmretqoubireeetqhueipspyestdemwittho abne aecqcuuirpapteediswlanitdhinagn daeccteucrtaiotenimslaecnhdainnigsmde[t2e7c–ti2o9n] manedchaarnoibsmust[2a7n–d29s]maonodtha sreoabmusletsasntdrasnmsiotiootnh csoenamtrolelsisnftrraasntsriuticotnurceo. ntrol infrastructure

AC vinv
Control Development for Voltage Source Inverter
Reference Frame
Phase-Locked Loop
Droop Implementation
Virtual Impedance
Voltage Compensation
Seamless Transition Control
Transition from Grid-Connected to Standalone Mode
Intentional Islanding
Unintentional Islanding
Voltage Synchronization
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call