Abstract

Effective tool wear monitoring (TWM) is essential for accurately assessing the degree of tool wear and for timely preventive maintenance. Existing data-driven monitoring methods mainly rely on complex feature engineering, which reduces the monitoring efficiency. This paper proposes a novel TWM model based on a parallel residual and stacked bidirectional long short-term memory (PRes–SBiLSTM) network. First, a parallel residual network (PResNet) is used to extract the multi-scale local features of sensor signals adaptively. Subsequently, a stacked bidirectional long short-term memory (SBiLSTM) network is used to obtain the time-series features related to the tool wear characteristics. Finally, the predicted tool wear value is outputted through a fully connected network. A smoothing correction method is applied to improve the prediction accuracy. The proposed model is experimentally verified to have a high prediction accuracy without sacrificing its generalization ability. A TWM system framework based on the PRes–SBiLSTM network is proposed, which has a certain reference value for TWM in actual industrial environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call