Abstract

In this paper, an intelligent target recognition system is presented for target recognition from target echo signal of High Resolution Range (HRR) radars. This paper especially deals with combination of the feature extraction and classification from measured real target echo signal waveforms using X-band pulse radar. Because of this, a wavelet packet neural network model developed by us is used. The model consists of two layers: wavelet and multi-layer perceptron. The wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of wavelet packet decomposition and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the developed system has been evaluated in noisy radar target echo (RTE) signals. The test results showed that this system was effective in detecting real RTE signals. The correct classification rate was about 95% for used target subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.