Abstract
Disaster is the occurrence or sequence of occurrences that endangers and disrupts people’s lives and livelihoods due to natural and/or non-natural as well as human elements, including fatalities, property loss, environmental harm, and psychological effects. In addition to concentrating on the victims’ safety and their own safety, the search and rescue (SAR) team plays a significant part in this evacuation operation. Based on these issues, this study examined how to use a drone equipped with electronic equipment to search for victims on the ground to speed up the evacuation process at natural disaster sites, assisting the evacuation process and enhancing the safety of the SAR team. The drone carries a near-infrared camera and GPS. The images captured by the camera provide the parameters for classifying victims using deep learning. The system has been implemented by sampling data from human poses resembling the position of the victims’ bodies from natural disasters. From the experimental results, the system can detect objects with high accuracy, that is, 99% in both static and dynamic conditions. The best model results were obtained at a height of 2 meters with a low error percentage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.