Abstract

The performance and the structural model of membrane electrode assembly (MEA) have been developed and experimentally verified with fundamental calculations of the direct methanol fuel cell (DMFC). The model provides information concerning the influence of the operating and structural parameters. The composition and performance optimization of MEA structure in DMFC has been investigated by including both electrochemical reaction and mass transport process. In the experimentation, the effect of Nafion content and loading method in the catalyst layer of cathode for DMFC was investigated. For the spray method electrode (SME), the cell performance and cathode performance using a dynamic hydrogen electrode (DHE) as a reference electrode was improved in comparison with those of the PME electrode by decreasing cathode potential. From ac impedance measurements of the cathode, the adsorption resistance of the SME electrode was decreased compared with that of the PME electrode. The higher cell performance was mostly dependent on the adsorption resistance. In the modelling, the cathode overpotential was decreased with increasing ionomer content, due to increasing ionic conductivity for proton transfer and the larger reaction site. The resistance to oxygen transport was increased at the same time, and became dominant at higher ionomer loadings, leading to an increase in the voltage loss. The ratio of ionomer to void space in the cathode affected the cathode polarization, which had the lowest resistance of oxygen diffusion at the ratio of 0.1–0.2. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.