Abstract

This article presents an intelligent stock trading system that can generate timely stock trading suggestions according to the prediction of short-term trends of price movement using dual-module neural networks(dual net). Retrospective technical indicators extracted from raw price and volume time series data gathered from the market are used as independent variables for neural modeling. Both neural network modules of thedual net learn the correlation between the trends of price movement and the retrospective technical indicators by use of a modified back-propagation learning algorithm. Reinforcing the temporary correlation between the neural weights and the training patterns, dual modules of neural networks are respectively trained on a short-term and a long-term moving-window of training patterns. An adaptive reversal recognition mechanism that can self-tune thresholds for identification of the timing for buying or selling stocks has also been developed in our system. It is shown that the proposeddual net architecture generalizes better than one single-module neural network. According to the features of acceptable rate of returns and consistent quality of trading suggestions shown in the performance evaluation, an intelligent stock trading system with price trend prediction and reversal recognition can be realized using the proposed dual-module neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.