Abstract
In recent years, there has been growing interest in postural monitoring while seated, thus preventing the appearance of ulcers and musculoskeletal problems in the long term. To date, postural control has been carried out by means of subjective questionnaires that do not provide continuous and quantitative information. For this reason, it is necessary to carry out a monitoring that allows to determine not only the postural status of wheelchair users, but also to infer the evolution or anomalies associated with a specific disease. Therefore, this paper proposes an intelligent classifier based on a multilayer neural network for the classification of sitting postures of wheelchair users. The posture database was generated based on data collected by a novel monitoring device composed of force resistive sensors. A training and hyperparameter selection methodology has been used based on the idea of using a stratified K-Fold in weight groups strategy. This allows the neural network to acquire a greater capacity for generalization, thus allowing, unlike other proposed models, to achieve higher success rates not only in familiar subjects but also in subjects with physical complexions outside the standard. In this way, the system can be used to support wheelchair users and healthcare professionals, helping them to automatically monitor their posture, regardless physical complexions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.