Abstract

Time-oriented domains with large volumes of time-stamped information, such as medicine, security information and finance, require useful, intuitive intelligent tools to process large amounts of time-oriented multiple-subject data from multiple sources. We designed and developed a new architecture, the VISualizatIon of Time-Oriented RecordS (VISITORS) system, which combines intelligent temporal analysis and information visualization techniques. The VISITORS system includes tools for intelligent selection, visualization, exploration, and analysis of raw time-oriented data and of derived (abstracted) concepts for multiple subject records. To derive meaningful interpretations from raw time-oriented data (known as temporal abstractions), we use the knowledge-based temporal-abstraction method. A major task in the VISITORS system is the selection of the appropriate subset of the subject population on which to focus during the analysis. Underlying the VISITORS population-selection module is our ontology-based temporal-aggregation (OBTAIN) expression-specification language which we introduce in this study. The OBTAIN language was implemented by a graphical expression-specification module integrated within the VISITORS system. The module enables construction of three types of expressions supported by the language: Select Subjects, Select Time Intervals, and Get Subjects Data. These expressions retrieve a list of subjects, a list of relevant time intervals, and a list of time-oriented subjects' data sets, respectively. In particular, the OBTAIN language enables population-specification, through the Select Subjects expression, by using an expressive set of time and value constraints. We describe the syntax and semantics of the OBTAIN language and of the expression-specification module. The OBTAIN expressions constructed by the expression-specification module, are computed by a temporal abstraction mediation framework that we have previously developed. To evaluate the expression-specification module, five clinicians and five medical informaticians defined ten expressions, using the expression-specification module, on a database of more than 1,000 oncology patients. After a brief training session, both user groups were able in a short time (mean = 3.3 ± 0.53 min) to construct ten complex expressions using the expression-specification module, with high accuracy (mean = 95.3 ± 4.5 on a predefined scale of 0 to 100). When grouped by time and value constraint subtypes, five groups of expressions emerged. Only one of the five groups (expressions using time-range constraints), led to a significantly lower accuracy of constructed expressions. The five groups of expressions could be clustered into four homogenous groups, ordered by increasing construction time of the expressions. A system usability scale questionnaire filled by the users demonstrated the expression-specification module to be usable (mean score for the overall group = 68), but the clinicians' usability assessment (60.0) was significantly lower than that of the medical informaticians (76.1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.